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Organisms have evolved an elaborate set of quality control systems to ensure
the fidelity of the genetic information flow. The mRNA surveillance systems work
in this context by monitoring the quality of mRNAs to ensure that they are suitable
for translation. In this review, recent achievements in the investigation of
mRNA surveillance pathways, including nonsense-mediated mRNA decay and
nonstop-mediated mRNA surveillance pathway, will be discussed.
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All cellular biochemical processes rely on the accuracy
of the expression of genetic information. To ensure
the fidelity of the genetic information flow, organisms
have evolved surveillance systems to assess the quality of
genetic entities. Although mRNA is an important genetic
material, its cellular quality control was discounted for a
long time because it was thought that abnormal mRNA
would not seriously affect the gross expression of genetic
information due to the short half-life of independent
mRNA transcripts in the cells. Recent researches,
however, have revealed that mRNA surveillance systems
are important for the maintenance of cellular functions.
In addition to having a damage-control function, mRNA
surveillance systems play critical regulatory roles in
normal gene expression. Thus, mRNA surveillance
mechanisms play important roles both in depleting
aberrant transcripts from cells and in maintaining the
proper level of normal transcripts. This review will focus
on recent researches investigating mRNA surveillance
pathways, with particular reference to metazoans.

NONSENSE-MEDIATED mRNA DECAY (NMD)

One of the best-studied mRNA surveillance pathways
is nonsense-mediated mRNA decay (NMD), which selec-
tively degrades aberrant transcripts harbouring in-frame
premature termination (nonsense) codons (PTCs) (1–5).
This kind of abnormal mRNA has the potential to
produce truncated proteins with dominant-negative or
deleterious gain-of-function activities. PTCs can arise in
a variety of ways, such as random nonsense and frame-
shift mutations in the genomic DNA sequence, pro-
grammed genomic DNA arrangements or errors in
mRNA splicing. Although the NMD pathway is con-
served in all eukaryotes examined to date, recent studies

in several organisms have revealed that different mech-
anisms have evolved to discriminate PTCs from natural
stop codons and to degrade the targeted mRNAs (6).
The recent excellent review by Chang et al. summarizes
conserved factors that are involved in NMD in all
eukaryotes (7). Namely, (i) PTCs are recognized by the
translating ribosome, (ii) three core trans-acting factors,
the up-frameshift (UPF) proteins 1, 2 and 3, form the NMD
machinery on the PTC-containing mRNA and (iii) mRNAs
containing the NMD complex of UPF proteins are subse-
quently degraded. It was reported that the SMG-
1-mediated phosphorylation of UPF1 remodels the mRNA
surveillance complex (8–11). In S. cerevisiae, a cis-acting
element destabilizes mRNAs when located downstream of
a nonsense codon (Fig. 1A) (12). This downstream sequence
element (DSE) appears to be required for the recognition of
premature stop codons in yeast (13). The hnRNP-like
protein Hrp1p/Nab4 interacts with the DSE to mark
the PTC for recognition by the NMD pathway (14). Newly
transported mRNAs associate with exon–exon junction
complexes (EJCs), which are formed by a splicing reaction
and persist during export and until themRNA is translated
(15–17). The EJC, including eIF4AIII, MLN51 and Y14/
MAGOH,makes anmRNP that recruits UPF complexes for
NMD substrate in mammalian cells (Fig. 1B) (18–23). The
quality of mRNA is surveyed by a pioneer round of
translation, during which premature translation termina-
tion occurring upstream of the EJC results in the formation
of a protein complex on mRNA that initiates the degrada-
tion of the aberrant mRNA during its export from the
nucleus to the cytoplasm (24–27). The role of the EJC in
NMD has been identified only in mammalian cells.
Recently, EJC-independent NMD in mammalian cells
was reported (28). This EJC-independent NMD depends
on the distance between the PTC and the poly(A) tail, as in
the yeast NMD pathway. Moreover, a UPF3-independent
NMD pathway is also present in mammalian cells (29).
Thus, mammalian NMD appears to be more variable than
previously suspected.
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Fig. 1. Schematic drawing of aberrant mRNAs and
surveillance complexes. (A) The open box indicates the ORF.
ATG, PTC, STOP and DSE indicate initiation codon, premature
termination codon, termination codon and downstream sequence
element, respectively. After the ribosome stalls at the PTC, a
certain element, such as DSE in yeast, measures the distance
between the stalled position of the ribosome and the natural
termination codon. Aberrant termination of the ribosome triggers
the formation of a surveillance complex on PTC-containing mRNA,
resulting in the facilitated degradation of PTC-containing
mRNA. (B) EJC indicates exon–exon junction complex. Aberrant
termination of the ribosome at the PTC, which is upstream of
the EJC, triggers the formation of a surveillance complex on

PTC-containing mRNA, resulting in facilitated degradation of
PTC-containing mRNA. (C) The ribosome translating nonSTOP
mRNA reaches and stalls at the 30-end of the nonSTOP mRNA.
TmRNA and protein factors associate with the stalling ribosome,
resulting in the release of the ribosome for recycling and the mRNA
for enhanced degradation. A tag sequence encoded by tmRNA is
added to the C-terminal of the polypeptide, and degradation of the
tagged polypeptide is accelerated. (D) A stalled ribosome at the
poly(A) tail of a nonSTOP transcript in yeast is recognized by Ski7p,
then the nonSTOP mRNA is degraded by the decapping-dependent
50-to-30-decay pathway and the Ski7p-dependent 30-to-50-decay
pathway. Translation of nonSTOP mRNA in eukaryotes is
repressed at the post-initiation step.
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NON-TERMINATION (nonSTOP)-MEDIATED mRNA
SURVEILLANCE SYSTEM IN BACTERIA

Another example of aberrant mRNA in cells is nonSTOP
mRNA, which lacks in-frame termination codons.
In eubacteria, translation of nonSTOP mRNAs results in
stalled ribosomes at the 30 end of the mRNA. Accumulation
of unproductively stalled ribosomes leads to undesirable
consequences for the cell; for example, ribosomes are
sequestrated from translation of other normal mRNAs. To
resolve this problem, eubacteria species have evolved a
unique quality-control system comprised of tmRNA (also
called as SsrA RNA or 10Sa RNA), a unique molecule
having properties of both tRNA and mRNA (Fig. 1C)
(30–32). The tRNA-like region of tmRNA acts first as an
alanyl-tRNA and donates alanine to the stalled peptide
chain using the empty A-site of the ribosome, and the
mRNA-like region of tmRNA displaces the nonSTOP
mRNA and directs the addition of a short peptide tail
to the C-terminus of the polypeptide. The resulting

carboxyl-terminal tagged proteins are processed for
proteolysis by several ATP-dependent proteases. Three
protein factors, alanyl-tRNA synthetase (Ala-RS), small
protein B (SmpB) and elongation factor Tu (EF-Tu), play
essential roles in this system by decoding the tag sequence
of tmRNA (33–35). Thus, the trans-translation pathway
plays central roles to orchestrate the rescue of ribosomes
stalling on nonstop transcripts and the addition of a
degradation tag to ribosome-associated protein fragments
for proteolysis. At the same time, this system works to
dispose of aberrant mRNAs. Recently, it was reported that
the trans-translation pathway facilitates the degradation
of nonSTOP mRNAs (36).

NonSTOP-MEDIATED mRNA SURVEILLANCE
SYSTEM IN EUKARYOTES

The mechanism that has evolved in yeast to ensure that
aberrant proteins from nonSTOP mRNAs are not
produced is distinct from the tmRNA system (Fig. 1D).
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Fig. 1. Continued.
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It was proposed that nonSTOP mRNAs can be generated
when 30 end formation occurs within the coding region of
cistrons as a consequence of genetic mutations (37, 38),
transcriptional pausing (39) or usage of cryptic poly-
adenylation sites (40, 41). Indeed, it has been estimated
that 40 of 3622 yeast ESTs have 30 ends located
upstream of the bona fide termination codon, suggesting
that nonSTOP mRNAs are truly produced in eukaryotic
cells (42). Genetic studies in S. cerevisiae have shown
that degradation of nonSTOP mRNA was facilitated by a
30-to-50-degradation pathway mediated by the ski com-
plex and exosomes (43, 44). Although both the NMD
pathway and the nonSTOP-mediated mRNA decay path-
way in yeast require a translation event, Upf1 function is
required for only the NMD pathway but not the
nonSTOP-mediated mRNA decay pathway. Therefore,
the nonSTOP-mediated mRNA decay pathway is
mechanistically distinguished from NMD. Inada and
Aiba proposed that the 50-to-30-degradation pathway
is also involved in the facilitated degradation of
nonSTOP mRNA in addition to exosome-mediated 30-to-
50-degradation, because double mutation of the decap-
ping-dependent 50-to-30 decay pathway and the
Ski7p-dependent 30-to-50 decay pathway had a signifi-
cantly greater effect than sole ski mutations (45). Ski7p
resembles the GTPase domains of the translation factors
EF1A and eRF3, and its function is required for
facilitated degradation of nonSTOP mRNA in yeast.
Because EF1A and eRF3 interact with the ribosomal
A-site occupied by the sense codon and nonsense codon,
respectively, a model was proposed that the ribosome
stalls at the 30-end of the poly(A) tail of nonSTOP mRNA
and Ski7p recognizes and enters the A-site of the stalling
ribosome. Ski7p recruits the exosome complex of the
30-to-50 exonucleases as well as the Ski complex, which
stimulates the degradation of nonSTOP mRNA by a
30-to-50 decay pathway.
In addition to the facilitated degradation of nonSTOP

mRNA in yeast, Inada and Aiba reported that protein
expression from a nonSTOP reporter gene is greatly
reduced (45). Most nonSTOP transcripts were distributed
in the EDTA-sensitive polysome fraction, and the
nonSTOP mRNA: ribosome complexes were stable after
inhibition of initiation even after sufficient time for
ribosomes translating wild-type mRNA to be released.
Inada and Aiba proposed that the translation of yeast
nonSTOPmRNA is repressed at the post-initiation step(s),
probably because of road-blocking ribosomes translating
nonSTOP mRNA immediately following the leading
translating ribosomes. However, Meaux and van Hoof
detected significant protein production from nonSTOP
mRNAs in yeast (46). Ito-Harashima et al. (47) pointed out
that the absence of a poly(A) tract at the 30-end of nonSTOP
mRNA in the study by Meaux and van Hoof affects the
translation repression of nonstop mRNA. It was assumed
that the translation of nonSTOP mRNA containing a
poly(A) tail results in the addition of poly-lysine residues to
the C-terminal of proteins produced from nonSTOPmRNA
caused by the translation of the poly(A) tract. In fact, Ito-
Harashima et al. reported that the insertion of a long
poly(A) tract immediately upstream of a termination codon
of a reporter gene strongly reduced the protein expression
(47). They suggested that the amino acid sequence, but not

the nucleotide sequence, determines the repression of
protein production from reporter genes harbouring a
poly(A) tract. Namely, greater than 10 consecutive lysine
residues translated from poly(A) are involved in transla-
tional repression. Although it is unclear why consecutive
lysine residues reduce protein production, the interaction
between poly-lysine and a component of ribosome tunnel
might be involved in translational repression.
Doma and Parker described a significantly different

type of RNA quality control system ‘no-go decay’ pathway
in yeast (48). In this pathway, the presence of mRNAs with
stalled ribosomes results in cleavage in the middle of the
mRNA close to the ribosome-stalling position, followed by
degradation. This pathway provides a mechanism for
clearing the cell of stalled translation elongation com-
plexes and a mechanism of post-transcriptional control.
The main targets for no-go decay in the cell might be
chemically damaged mRNAs, which can cause a complete
translation block (49). It is not clear whether the no-go
decay pathway is conserved in other animals.

TRANSLATIONAL REPRESSION OF nonSTOP
mRNA IN MAMMALIAN CELLS

Several examples of nonstop transcripts produced in
mammalian cells have been reported (38, 50, 51),
although in some cases it is unclear if they really
lacked in-frame termination codons. A loss of two
nucleotides removes the termination codon from the
mitochondrial RNA14 transcript and results in the
production of nonSTOP mRNA in human mitochondria
(37). The steady-state level of nonSTOP RNA14 is
markedly decreased, and the polyadenylation profile of
the processed nonSTOP RNA14 is substantially abnor-
mal. The majority of nonSTOP RNA14 is terminated
with short poly(A) extensions. Temperley et al. proposed
that the loss of a termination codon causes enhanced
mitochondrial mRNA decay by translation-dependent
deadenylation. The protein production from nonSTOP
RNA14 is still at issue. Jesina et al. (52) reported that
translation of nonSTOP mRNA is repressed in human
mitochondria. In contrast, Chrzanowska-Lightowlers
et al. (53) reported that functional polypeptides are
produced from nonSTOP RNA14 mRNA. Thus, there is
an apparent contradiction in the protein production from
mitochondrial nonSTOP mRNA.
The fate of nonSTOP mRNA expressed from the nucleus

in mammalian cells was examined by using a
reporter gene, such as luciferase or green fluorescence
protein (54). Although degradation of nonSTOP mRNA
in humanmitochondria, yeast and bacteria is facilitated as
mentioned earlier, enhanced degradation of nuclear-
transcribed nonSTOP mRNA was not observed in mam-
malian cells. However, translation of nonSTOP mRNA
was significantly repressed at a post-initiation step in the
cytoplasm because: (i) repressed nonSTOP mRNAs were
associated with polysomes, and (ii) translation of internal
ribosome entry site (IRES)-initiated and uncapped
nonSTOP mRNA was still repressed. Full-length protein
production from nonSTOP mRNA:polysomes complexes
formed in vivo was significantly reduced when used to
program an in vitro run-off translation assay, indicating
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that the translation elongation step of nonSTOP mRNA is
inhibited. Interestingly, most nonSTOP mRNAs were
distributed in lighter polysome fractions than control
mRNAs that contained a stop codon, and a significant
amount of heterogeneous polypeptides were produced
during in vitro translation of nonSTOP mRNAs, suggest-
ing premature termination of ribosomes translating
nonSTOP mRNA. Moreover, ribosome-protected poly(A)
fragments were produced from nonSTOP mRNA in a cell-
free translation system, indicating the presence of a
ribosome stalled at the 30-end of nonSTOP mRNAs.
Taken together, a model was proposed that a ribosome
stalling at the 30-end of nonSTOP mRNAs prevents
upstream translation by enhancing premature termina-
tion of translation (Fig. 2). This is an interesting observa-
tion, because it implies that the lack of a termination
codon in nonSTOP transcripts causes the accumulation of
stalled ribosomes at the 30-end of mRNA as the result of
the nonSTOP-mediated RNA surveillance system in yeast
and eubacteria.

REGULATION OF NATURALLY OCCURRING TRANSCRIPTS
IN nonSTOP-MEDIATED mRNA METABOLISM

It was proposed that NMD is crucial for not only muting
genetic noise, but also for the expression of normal
transcripts, including the upstream open reading frame.
For example, NMD regulates the expression of naturally
occurring transcripts that represent �10% of the tran-
scriptome in yeast (55, 56), worm (57, 58), fly (59) and
mammalian cells (60). By the same token, one might
speculate that the cellular mechanism recognizing
nonSTOP mRNAs regulates the expression of naturally
occurring transcripts. In fact, a subset of normal genes
produces natural nonSTOP transcripts, such as CBP1,
AEP/ATP13, RNA14 and SIR1 in yeast (61–64), nad6 and
ccmC in plants (65) and GHR in chicken (66), although
there is no experimental proof that expression of these
genes is regulated by the cellular system that recognizes
nonSTOP transcripts. Recently, it was proposed that
degradation of pseudogenes by the NMD pathway is
implicated in protein/gene evolution (58). Interestingly,
there is genetic interaction between the [PSI+] phenotype
and the mechanism recognizing nonSTOP mRNAs
in yeast (67). It was proposed that the [PSI+] phenotype
can be a capacitor for evolutionary change, because
the presence of [PSI+], which has several unique
and beneficial abilities such as the epigenetic feature to
adapt to environmental conditions without permanent
genetic change and plasticity to respond to fluctuating
environments, may provide enhanced fitness for
S. cerevisiae to survive in different severe growth condi-
tions (68–70). One might speculate that the nonSTOP-
mediated RNA surveillance pathway is involved not only
in muting aberrant transcripts and regulating naturally
occurring transcripts, but also in environmental adapta-
tions via genetic and epigenetic mechanisms.

CONCLUDING REMARKS

Translating ribosomes play a central role in the mRNA
surveillance systems described earlier. Recently, the

production of vast amounts of non-coding RNAs in
eukaryotes was discovered. Because of their ‘non-coding’
properties, ribosomes are not involved in quality control
of non-coding RNA. A cellular surveillance pathway also
monitors the quality of nuclear-retained mRNAs. The
DRN (degradation of mRNA in nucleus) pathway is one
candidate for the translation-independent nuclear RNA
surveillance system (71–73). Moreover, the existence of a
quality control system to limit inappropriate transcripts
in the nucleus has been proposed (74). Degradation of
aberrant tRNA and ribosomal RNA is facilitated in
nucleus (75, 76). The clarification of not only the
ribosome-mediated mRNA surveillance system but also
translation-independent RNA, especially in the nucleus,
will be the next major issue in this field.
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